Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 805
Filtrar
1.
J Inorg Biochem ; 252: 112482, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218138

RESUMO

Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli , Shewanella , Globinas/química , Oxigênio/metabolismo , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Biofilmes , Heme/química , Proteínas de Bactérias/química
2.
J Inorg Biochem ; 250: 112387, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914583

RESUMO

Most hemoproteins display an all-α-helical fold, showing the classical three on three (3/3) globin structural arrangement characterized by seven or eight α-helical segments that form a sandwich around the heme. Over the last decade, a completely distinct class of heme-proteins called nitrobindins (Nbs), which display an all-ß-barrel fold, has been identified and characterized from both structural and functional perspectives. Nbs are ten-stranded anti-parallel all-ß-barrel heme-proteins found across the evolutionary ladder, from bacteria to Homo sapiens. Myoglobin (Mb), commonly regarded as the prototype of monomeric all-α-helical globins, is involved along with the oligomeric hemoglobin (Hb) in diatomic gas transport, storage, and sensing, as well as in the detoxification of reactive nitrogen and oxygen species. On the other hand, the function(s) of Nbs is still obscure, even though it has been postulated that they might participate to O2/NO signaling and metabolism. This function might be of the utmost importance in poorly oxygenated tissues, such as the eye's retina, where a delicate balance between oxygenation and blood flow (regulated by NO) is crucial. Dysfunction in this balance is associated with several pathological conditions, such as glaucoma and diabetic retinopathy. Here a detailed comparison of the structural, spectroscopic, and functional properties of Mb and Nbs is reported to shed light on the similarities and differences between all-α-helical and all-ß-barrel heme-proteins.


Assuntos
Globinas , Mioglobina , Humanos , Globinas/química , Heme/química , Hemoglobinas/química , Mioglobina/química , Análise Espectral
3.
Biophys J ; 122(15): 3117-3132, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37353934

RESUMO

Artificial proteins representing the consensus of a set of homologous sequences have attracted attention for their increased thermodynamic stability and conserved activity. Here, we applied the consensus approach to a b-type heme-binding protein to inspect the contribution of a dissociable cofactor to enhanced stability and the chemical consequences of creating a generic heme environment. We targeted the group 1 truncated hemoglobin (TrHb1) subfamily of proteins for their small size (∼120 residues) and ease of characterization. The primary structure, derived from a curated set of ∼300 representative sequences, yielded a highly soluble consensus globin (cGlbN) enriched in acidic residues. Optical and NMR spectroscopies revealed high-affinity heme binding in the expected site and in two orientations. At neutral pH, proximal and distal iron coordination was achieved with a pair of histidine residues, as observed in some natural TrHb1s, and with labile ligation on the distal side. As opposed to studied TrHb1s, which undergo additional folding upon heme binding, cGlbN displayed the same extent of secondary structure whether the heme was associated with the protein or not. Denaturation required guanidine hydrochloride and showed that apo- and holoprotein unfolded in two transitions-the first (occurring with a midpoint of ∼2 M) was shifted to higher denaturant concentration in the holoprotein (∼3.7 M) and reflected stabilization due to heme binding, while the second transition (∼6.2 M) was common to both forms. Thus, the consensus sequence stabilized the protein but exposed the existence of two separately cooperative subdomains within the globin architecture, masked as one single domain in TrHb1s with typical stabilities. The results suggested ways in which specific chemical or thermodynamic features may be controlled in artificial heme proteins.


Assuntos
Globinas , Hemeproteínas , Globinas/química , Dobramento de Proteína , Termodinâmica , Heme/metabolismo , Desnaturação Proteica
4.
Int J Biol Macromol ; 240: 124471, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076076

RESUMO

Thermosynechococcus elongatus-BP1 belongs to the class of photoautotrophic cyanobacterial organisms. The presence of chlorophyll a, carotenoids, and phycocyanobilin are the characteristics that categorize T. elongatus as a photosynthetic organism. Here, we report the structural and spectroscopic characteristics of a novel hemoglobin (Hb) Synel Hb from T.elongatus, synonymous with Thermosynechococcus vestitus BP-1. The X-ray crystal structure (2.15 Å) of Synel Hb suggests the presence of a globin domain with a pre-A helix similar to the sensor domain (S) family of Hbs. The rich hydrophobic core accommodates heme in a penta-coordinated state and readily binds an extraneous ligand (imidazole). The absorption and circular dichroic spectral analysis of Synel Hb reiterated that the heme is in FeIII+ state with a predominantly α-helical structure similar to myoglobin. Synel Hb displays higher resistance to structural perturbations induced via external stresses like pH and guanidium hydrochloride, which is comparable to Synechocystis Hb. However, Synel Hb exhibited lower thermal stability compared to mesophilic hemoglobins. Overall, the data is suggestive of the structural sturdiness of Synel Hb, which probably corroborates its origin in extreme thermophilic conditions. The stable globin provides scope for further investigation and may lead to new insights with possibilities for engineering stability in hemoglobin-based oxygen carriers.


Assuntos
Globinas , Synechocystis , Globinas/química , Globinas/metabolismo , Clorofila A , Hemoglobinas/química , Synechocystis/metabolismo , Heme/química , Concentração de Íons de Hidrogênio
5.
Chem Res Toxicol ; 36(3): 430-437, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36861465

RESUMO

The 4-biphenylnitrenium ion (BPN), a reactive metabolic intermediate of the tobacco smoke carcinogen 4-aminobiphenyl (4-ABP), can react with nucleophilic sulfanyl groups in glutathione (GSH) as well as in proteins. The main site of attack of these S-nucleophiles was predicted using simple orientational rules of aromatic nucleophilic substitution. Thereafter, a series of presumptive 4-ABP metabolites and adducts with cysteine were synthesized, namely, S-(4-amino-3-biphenyl)cysteine (ABPC), N-acetyl-S-(4-amino-3-biphenyl)cysteine (4-amino-3-biphenylmercapturic acid, ABPMA), S-(4-acetamido-3-biphenyl)cysteine (AcABPC), and N-acetyl-S-(4-acetamido-3-biphenyl)cysteine (4-acetamido-3-biphenylmercapturic acid, AcABPMA). Then, globin and urine of rats dosed with a single ip dose of 4-ABP (27 mg/kg b.w.) was analyzed by HPLC-ESI-MS2. ABPC was identified in acid-hydrolyzed globin at levels of 3.52 ± 0.50, 2.74 ± 0.51, and 1.25 ± 0.12 nmol/g globin (mean ± S.D.; n = 6) on days 1, 3, and 8 after dosing, respectively. In the urine collected on day 1 (0-24 h) after dosing, excretion of ABPMA, AcABPMA, and AcABPC amounted to 1.97 ± 0.88, 3.09 ± 0.75, and 3.69 ± 1.49 nmol/kg b.w. (mean ± S.D.; n = 6), respectively. On day 2, excretion of the metabolites decreased by one order of magnitude followed by a slower decrease on day 8. Regarding the possible formation of AcABPC from ABPC, N-acetylation of the amino group at the biphenyl moiety prior to that at cysteine appears to be very unlikely. Thus, the structure of AcABPC indicates the involvement of N-acetyl-4-biphenylnitrenium ion (AcBPN) and/or its reactive ester precursors in in vivo reactions with GSH and protein-bound cysteine. ABPC in globin might become an alternative biomarker of the dose of toxicologically relevant metabolic intermediates of 4-ABP.


Assuntos
Carcinógenos , Poluição por Fumaça de Tabaco , Ratos , Animais , Carcinógenos/química , Globinas/química , Cisteína/química , Compostos de Aminobifenil/química , Fumaça
6.
Dalton Trans ; 52(10): 2976-2987, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36651272

RESUMO

Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin belonging to the same lineage of the globin superfamily as globin-coupled sensors. A putative role in the scavenging of reactive nitrogen and oxygen species has been suggested as a possible adaptation mechanism of the host organism to different gaseous environments in the course of evolution. A combination of optical absorption, electronic circular dichroism (ECD), resonance Raman (rRaman), and electron paramagnetic resonance (EPR) reveal the unusual in vitro reaction of ferric MaPgb with nitrite. In contrast to other globins, a large excess of nitrite did not induce the formation of a nitriglobin form in MaPgb. Surprisingly, the addition of nitrite in mildly acidic pH led to the formation of a stable nitric-oxide ligated ferric form of the protein (MaPgb-NO). Furthermore, the 300-700 nm ECD spectrum of ferric MaPgb is for the first time reported and discussed, showing strong differences in the Soret and Q ellipticity compared to ferric myoglobin, in line with the unusually strongly ruffled haem group of MaPgb and the related quantum-mechanical admixture of the S = 5/2 and S = 3/2 state of its ferric form. The Soret and Q ellipticity change strongly upon formation of MaPgb-NO, revealing a significant effect of the nitric-oxide ligation on the haem group and pocket. The related changes in the asymmetric pyrrole half-ring stretching vibration modes observed in the rRaman spectra give experimental support to earlier theoretical models, in which an important role of the in-plane breathing modes of the haem was predicted for the stabilization of the binding of diatomic gases to MaPgb.


Assuntos
Heme , Nitritos , Heme/química , Methanosarcina/química , Methanosarcina/metabolismo , Ligantes , Globinas/química , Globinas/metabolismo , Ferro/metabolismo , Óxido Nítrico/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
7.
FEBS J ; 290(1): 148-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866372

RESUMO

In the present study, human neuroglobin (hNgb) was found to undergo H2 O2 -induced breakdown of the heme center at a much slower rate than other globins, namely in the timescale of hours against minutes. We investigated how the rate of the process is affected by the Cys46/Cys55 disulfide bond and the network of non-covalent interactions in the distal heme side involving Tyr44, Lys67, the His64 heme iron axial ligand and the heme propionate-7. The rate is increased by the Tyr44 to Ala and Phe mutations; however the rate is lowered by Lys67 to Ala swapping. The absence of the disulfide bridge slows down the reaction further. Therefore, the disulfide bond-controlled accessibility of the heme site and the residues at position 44 and 67 affect the activation barrier of the reaction. Wild-type and mutated species form ß-amyloid aggregates in the presence of H2 O2 producing globular structures. Furthermore, the C46A/C55A, Y44A, Y44F and Y44F/C46A/C55A variants yield potentially harmful fibrils. Finally, the nucleation and growth kinetics for the aggregation of the amyloid structures can be successfully described by the Finke-Watzky model.


Assuntos
Peróxido de Hidrogênio , Agregados Proteicos , Humanos , Neuroglobina , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dissulfetos/metabolismo , Globinas/química , Heme/química , Hidrogênio
8.
J Inorg Biochem ; 238: 112063, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370505

RESUMO

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C. elegans globin-3 (GLB-3). GLB-3 is predicted to exist in two isoforms and is expressed in the reproductive and nervous system. Knockout of this globin causes a 99% reduction in fertility and reduced motility. Spectroscopic analysis reveals that GLB-3 exists as a bis-histidyl-ligated low-spin form in both the ferrous and ferric heme form. A function in binding of diatomic gases is excluded on the basis of the slow CO-binding kinetics. Unlike other globins, GLB-3 is also not capable of reacting with H2O2, H2S, and nitrite. Intriguingly, not only does GLB-3 contain a high number of cysteine residues, it is also highly stable under harsh conditions (pH = 2 and high concentrations of H2O2). The resilience diminishes when the N- and C-terminal extensions are removed. Redox potentiometric measurements reveal a slightly positive redox potential (+8 ± 19 mV vs. SHE), suggesting that the heme iron may be able to oxidize cysteines. Electron paramagnetic resonance shows that formation of an intramolecular disulphide bridge, involving Cys70, affects the heme-pocket region. The results suggest an involvement of the globin in (cysteine) redox chemistry.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Globinas/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Heme/química , Sistema Nervoso/metabolismo
9.
J Inorg Biochem ; 237: 111982, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116154

RESUMO

Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.


Assuntos
Proteínas do Tecido Nervoso , Nitrito Redutases , Animais , Nitrito Redutases/química , Proteínas do Tecido Nervoso/química , Globinas/química , Citoglobina/metabolismo , Oxirredução , Neuroglobina/metabolismo , Óxido Nítrico/química , Mamíferos/metabolismo
10.
J Inorg Biochem ; 236: 111976, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058051

RESUMO

Several novel members of the vertebrate globin family were recently discovered with unique structural features that are not found in traditional penta-coordinate globins. Here we combine structural tools to better understand and recognize molecular determinants that contribute to the stability of hexacoordinate globin X (GbX) from Danio rerio (zebrafish). pH-induced unfolding data indicates increased stability of GbX with pHmid of 1.9 ± 0.1 for met GbXWT, 2.4 ± 0.1 for met GbXC65A, and 3.4 ± 0.1 for GbXH90V. These results are in good agreement with GbX unfolding experiments using GuHCl, where a ΔGunf 13.8 ± 2.5 kcal mol-1 and 16.3 ± 2.6 kcal mol-1 are observed for metGbXWT, and metGbXC65A constructs, respectively, and diminished stability is measured for GbXH90V, ΔGunf = 9.5 ± 3.6 kcal mol-1. The metGbXWT and metGbXC65A also exhibit high thermal stability (melting points of 118 °C and 107 °C, respectively). Native ion mobility - mass spectrometry (IM-MS) experiments showed a narrow charge state distribution (9-12+) characteristics of a native, structured protein; a single mobility band was observed for the native states. Collision induced unfolding IM-MS experiments showed a two-state transition, in good agreement with the solution studies. GbXWT retains the heme over a wide range of charge states, suggesting strong interactions between the prosthetic group and the apoprotein. The above results indicate that in addition to the disulfide bond and the heme iron hexa-coordination, other structural determinants enhance stability of this protein.


Assuntos
Globinas , Peixe-Zebra , Animais , Apoproteínas , Dissulfetos , Globinas/química , Heme/química , Ferro , Dobramento de Proteína
11.
Arch Microbiol ; 204(8): 493, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841431

RESUMO

Globin (Gb) domains function in sensing gaseous ligands like oxygen and nitric oxide. In recent years, Gb domain containing heme binding adenylate cyclases (OsAC or GbAC) emerged as significant modulator of Leishmania response to hypoxia and oxidative stress. During progression of life cycle stages, kinetoplastids experience altered condition in insect vectors or other hosts. Moreover, marked diversity in life style has been accounted among kinetoplastids. Distribution and abundance of Gb-domains vary between different groups of kinetoplastids. While in bodonoids, Gbs are not combined with any other functional domains, in trypanosomatids it is either fused with adenylate cyclase (AC) or oxidoreductase (OxR) domains. In salivarian trypanosomatids and Leishmania (Viannia) subtypes, no gene product featuring Gbs can be identified. In this context, evolution of Gb-domains in kinetoplastids was explored. GbOxR derived Gbs clustered with bacterial flavohemoglobins (fHb) including one fHb from Advenella, an endosymbiont of monoxeneous trypanosomatids. Codon adaptation and other evolutionary analysis suggested that OsAC (LmjF.28.0090), the solitary Gb-domain featuring gene product in Leishmania, was acquired via possible horizontal gene transfer. Substantial functional divergence was estimated between orthologues of genes encoding GbAC or GbOxR; an observation also reflected in structural alignment and heme-binding residue predictions. Orthologue-paralogue and synteny analysis indicated genomic reduction in GbOxR and GbAC loci for dixeneous trypanosomatids.


Assuntos
Transferência Genética Horizontal , Globinas , Sequência de Aminoácidos , Códon , Globinas/química , Globinas/genética , Globinas/metabolismo , Heme/química , Heme/metabolismo , Filogenia
12.
J Inorg Biochem ; 233: 111839, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35599166

RESUMO

Globins play a key role in regulating nitric oxide (NO) levels in all forms of life. Five key reactions of NO with mammalian muscle myoglobin (Mb) and red blood cell hemoglobin (Hb) have been examined: (1) reversible NO binding to Fe(II) forms; (2) reversible NO binding to Fe(III) forms; (3) NO dioxygenation by Fe(II)O2 complexes; (4) autoxidation of Fe(II)NO complexes in the presence of O2; and (5) autoreduction of Fe(III)NO complexes. NO reacts rapidly and almost irreversibly with deoxyMb(FeII) in the absence of O2, whereas it reacts much more slowly and weakly with metMb(FeIII). The reaction of NO with Mb(FeII)O2 is very rapid and results in oxidation of the iron atom and dioxygenation of NO to nitrate. Autoxidation of Mb(FeII)NO in air is determined by the slow rate of NO dissociation from the Fe(II)NO complex, which is followed by rapid O2 binding to the newly formed deoxyMb(FeII) and dioxygenation of the displaced NO to generate NO3- and metMb(FeIII). MetMb(FeIII)NO autoreduces slowly by addition of a hydroxide ion to bound NO to generate nitrous acid and reduced deoxyMb(FeII), which immediately binds another NO to generate Mb(FeII)NO as the final product. The reverse of this process involves nitrite reduction to NO by deoxyMb(FeII), which can occur on physiological time scales when the globin concentration is in the millimolar range. The relevance of these processes to the regulation of NO metabolism by hemoglobins and myoglobins in humans and other organisms is discussed.


Assuntos
Hemoglobinas , Mamíferos , Mioglobina , Óxido Nítrico , Animais , Compostos Férricos/química , Compostos Férricos/metabolismo , Globinas/química , Globinas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Mamíferos/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitritos/química , Oxirredução
13.
Chem Commun (Camb) ; 58(39): 5885-5888, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35471205

RESUMO

An artificial disulfide bond (Cys46-Cys61) was designed in the heme distal site of myoglobin, which regulates the conformation of the heme distal His64 and the protein reactivity, as confirmed by X-ray crystallography, EPR, and kinetic UV-vis studies. This study shows the successful design of a disulfide bond with suitable positions in globins, conferring a structure and function like those of the native human neuroglobin.


Assuntos
Dissulfetos , Mioglobina , Dissulfetos/química , Globinas/química , Heme/química , Humanos , Mioglobina/química , Neuroglobina , Conformação Proteica
14.
Proteins ; 90(5): 1152-1158, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34982478

RESUMO

Human neuroglobin (Ngb) contains a heme group and three Cys residues (Cys46, Cys55, and Cys120) in the polypeptide chain. By introducing an additional Cys at position 15, the X-ray structure of A15C Ngb mutant was solved at a high resolution of 1.35 Å, which reveals the formation of both the native (C46C55) and the engineered (C15C120) disulfide bonds, likely playing a functional and structural role, respectively, according to the geometry analysis. Unexpectedly, 1,4-dioxane from the crystallization reagents was bound not only to the protein surface, but also to the heme distal pocket, providing insights into protein-ligand interactions for the globin and guiding the design of functional heme enzymes.


Assuntos
Globinas , Proteínas do Tecido Nervoso , Sítios de Ligação , Dissulfetos/química , Globinas/química , Globinas/genética , Globinas/metabolismo , Heme/química , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Neuroglobina , Raios X
15.
Mol Aspects Med ; 84: 101055, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34876274

RESUMO

Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches.


Assuntos
Globinas , Proteínas do Tecido Nervoso , Animais , Encéfalo/metabolismo , Globinas/química , Globinas/genética , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neuroglobina/metabolismo , Neurônios/metabolismo
16.
J Biochem ; 169(6): 663-673, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-33479760

RESUMO

Tardigrades, a phylum of meiofaunal organisms, exhibit extraordinary tolerance to various environmental conditions, including extreme temperatures (-273 to 151°C) and exposure to ionizing radiation. Proteins from anhydrobiotic tardigrades with homology to known proteins from other organisms are new potential targets for structural genomics. Recently, we reported spectroscopic and structural characterization of a hexacoordinated haemoglobin (Kumaglobin [Kgb]) found in an anhydrobiotic tardigrade. In the absence of its exogenous ligand, Kgb displays hexacoordination with distal and proximal histidines. In this work, we analysed binding of the molecular oxygen ligand following reduction of haem in Kgb using a pulse radiolysis technique. Radiolytically generated hydrated electrons (eaq-) reduced the haem iron of Kgb within 20 µs. Subsequently, ferrous haem reacted with O2 to form a ferrous-dioxygen intermediate with a second-order rate constant of 3.0 × 106 M-1 s-1. The intermediate was rapidly (within 0.1 s) autooxidized to the ferric form. Redox potential measurements revealed an E'0 of -400 mV (vs. standard hydrogen electrode) in the ferric/ferrous couple. Our results suggest that Kgb may serve as a physiological generator of O2▪- via redox signalling and/or electron transfer.


Assuntos
Globinas/química , Histidina/química , Oxigênio/metabolismo , Tardígrados/metabolismo , Água/química , Animais , Transporte de Elétrons , Globinas/metabolismo , Histidina/metabolismo , Ligantes , Oxirredução , Radiólise de Impulso
17.
Mar Genomics ; 57: 100831, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33250437

RESUMO

In the freezing waters of the Southern Ocean, Antarctic teleost fish, the Notothenioidei, have developed unique adaptations to cope with cold, including, at the extreme, the loss of hemoglobin in icefish. As a consequence, icefish are thought to be the most vulnerable of the Antarctic fish species to ongoing ocean warming. Some icefish also fail to express myoglobin but all appear to retain neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X. Despite the lack of the inducible heat shock response, Antarctic notothenioid fish are endowed with physiological plasticity to partially compensate for environmental changes, as shown by numerous physiological and genomic/transcriptomic studies over the last decade. However, the regulatory mechanisms that determine temperature/oxygen-induced changes in gene expression remain largely unexplored in these species. Proteins such as globins are susceptible to environmental changes in oxygen levels and temperature, thus playing important roles in mediating Antarctic fish adaptations. In this study, we sequenced the full-length transcripts of myoglobin, neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X from the Antarctic red-blooded notothenioid Trematomus bernacchii and the white-blooded icefish Chionodraco hamatus and evaluated transcripts levels after exposure to high temperature and low oxygen levels. Basal levels of globins are similar in the two species and both stressors affect the expression of Antarctic fish globins in brain, retina and gills. Temperature up-regulates globin expression more effectively in white-blooded than in red-blooded fish while hypoxia strongly up-regulates globins in red-blooded fish, particularly in the gills. These results suggest globins function as regulators of temperature and hypoxia tolerance. This study provides the first insights into globin transcriptional changes in Antarctic fish.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica/fisiologia , Globinas/genética , Perciformes/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Globinas/química , Globinas/metabolismo , Masculino , Perciformes/metabolismo , Filogenia , Alinhamento de Sequência/veterinária
18.
Yonsei Med J ; 61(12): 1064-1067, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33251782

RESUMO

Hemoglobin M (HbM) is a group of abnormal hemoglobin variants that form methemoglobin, which leads to cyanosis and hemolytic anemia. HbM-Milwaukee-2 is a rare variant caused by the point mutation CAC>TAC on codon 93 of the hemoglobin subunit beta (HBB) gene, resulting in the replacement of histidine by tyrosine. We here report the first Korean family with HbM-Milwaukee-2, whose diagnosis was confirmed by gene sequencing. A high index of suspicion for this rare Hb variant is necessary in a patient presenting with cyanosis since childhood, along with methemoglobinemia and a family history of cyanosis.


Assuntos
Cianose/etiologia , Globinas/genética , Hemoglobina M , Metemoglobinemia/congênito , Adolescente , Criança , Cianose/genética , Feminino , Globinas/química , Hemoglobina M/genética , Hemoglobinas Anormais/genética , Humanos , Masculino , Metemoglobina/análise , Metemoglobina/genética , Metemoglobinemia/diagnóstico , Metemoglobinemia/genética , Mutação Puntual , República da Coreia , Análise de Sequência de DNA
19.
Genome Biol Evol ; 12(10): 1719-1733, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597988

RESUMO

Animals depend on the sequential oxidation of organic molecules to survive; thus, oxygen-carrying/transporting proteins play a fundamental role in aerobic metabolism. Globins are the most common and widespread group of respiratory proteins. They can be divided into three types: circulating intracellular, noncirculating intracellular, and extracellular, all of which have been reported in annelids. The diversity of oxygen transport proteins has been underestimated across metazoans. We probed 250 annelid transcriptomes in search of globin diversity in order to elucidate the evolutionary history of this gene family within this phylum. We report two new globin types in annelids, namely androglobins and cytoglobins. Although cytoglobins and myoglobins from vertebrates and from invertebrates are referred to by the same name, our data show they are not genuine orthologs. Our phylogenetic analyses show that extracellular globins from annelids are more closely related to extracellular globins from other metazoans than to the intracellular globins of annelids. Broadly, our findings indicate that multiple gene duplication and neo-functionalization events shaped the evolutionary history of the globin family.


Assuntos
Anelídeos/genética , Evolução Molecular , Globinas/genética , Família Multigênica , Sequência de Aminoácidos , Animais , Anelídeos/química , Duplicação Gênica , Globinas/química , Filogenia
20.
Subcell Biochem ; 94: 251-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189303

RESUMO

There are three broad groups of oxygen-transport proteins found in the haemolymph (blood) of invertebrates, namely the hemocyanins, the hemerythrins and the globins. Both hemerythrins and extracellular globins are iron-based proteins that are understudied when compared to the copper-containing hemocyanins. Recent evidence suggests that hemerythrins and (giant) extracellular globins (and their linker chains) are more widely distributed than previously thought and may have biological functions beyond oxygen transport and storage. Herein, we review contemporary literature of these often-neglected proteins with respect to their structural configurations on formation and ancestral states.


Assuntos
Evolução Molecular , Globinas/química , Hemeritrina/química , Hemocianinas/química , Invertebrados/química , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...